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An algorithm for determining the distribution of maximal entropy subject to constraints 
is presented. The method provides an alternative to the conventional procedure which 
requires the numerical solution of a set of implicit nonlinear equations for the Lagrange 
multipliers. Here they are determined by seeking a minimum of a concave function, a 
procedure which readily lends itself to computational work. The program also incorporates 
two preliminary stages. The first verifies that the constraints are linearly independent and 
the second checks that a feasible solution exists. 

1. TNTR~DUCTI~N 

In applications of probability theory to the physical sciences [l] one is often faced 
with the problem of determining a distribution consistent with a given set of average 
values. For n distinct states one thus seeks a vector x (components xi , xi > 0, 
i = l,..., n), characterized by 

$I A,ixi = h, , r = I,..., m. (2) 

Here Eq. (1) is the normalization condition and (2) defines b, as the average value 
of the property A, , whose magnitude in the ith state is A,$ . Equations (1) and (2) 
represent 111 + 1 constraints on the vector x and hence, if m < n - 1, do not suffice 
to provide a unique characterization. The principle of maximal entropy [l] provides 
that when IIT < n - 1, the probability assignment be made by the additional condition 
that the entropy, S[x] (or missing information [l, 21) of the distribution, 

S[x] = - i xi In xi, 
i=l 
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be maximal. The method of Lagrange parameters [I] shows that the particular distri- 
bution .Y which is of maximal entropy is of the form 

pi =-: exp (-A, - f X,A,.,) 
r-1 

(4) 

The tn --I- 1 Lagrange parameters (h, , h, ,..., A,,,) in (4) are to be determined by the 
m -I- 1 conditions that the distribution be normalized (Eq. (1)) 

Z(h, ,..., A,) = exp(h,) = C expc- f &.FI,~) 
1 r=1 

and satisfy the rn additional constraints (Eq. (2)) 

c &Pi = b, (6) 

which can be written in matrix notation Ap = b, or, using (5), as 

= 0, Y = I,..., 1~7. 
i 

(7) 

To simplify the subsequent manipulations we now define 

so that, in matrix notation, Eq. (7) reads Bp = 0. Tt is also important to note that using 
the B,‘s as the constraints leaves the magnitude of the m Lagrange parameters 
(h, ,..., h,,) unchanged, and that the only change is in the magnitude of X,, , i.e.. 

Hence, one can rewrite (7) as 

~&exp~- f h,Bsi) = 0, r = I,..., 171. (7’) 
1 s-1 

The m equations (7) for the Lagrange parameters are implicit and nonlinear. Even 
for m = 1, a numerical procedure is required (except if A,; has a particularly pleasing 
structure) and increasingly often one requires a solution for m > 1, [3]. The purpose 
of this paper is to document an efficient algorithm for the determination of the 
Lagrange parameters. To avoid the need to solve Eq. (7) the approach recasts the 
problem of determining the Lagrange parameters as a variational problem. A “poten- 
tial” function which is concave for any trial set of Lagrange parameters [4] is intro- 
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duced. The values of the parameters are determined as the set which minimizes the 
potential. 

Section 2 is a discussion of the conditions on the avarage values which insure that 
a unique solution for the Lagrange parameters is indeed feasible. The method of 
solution is introduced in Section 3 and the actual algorithm is described in Section 4. 
An example is provided. A flow chart and the actual program are available upon 
request. 

2. A FEASIBLE SOLUTION 

To obtain a distribution of maximal entropy with a unique set of Lagrange para- 
meters it is necessary to restrict the matrix A and the vector b (cf. Eq. (6)) as follows. 

2.1. Linear Independence 

The rows of the matrix A need be linearly independent (i.e., A should be of maximal 
rank). This not only insures that Ap = b has a solution but also implies that the set 
of Lagrange parameters is unique, i.e., that In pi can be resolved in only one way as 

lnp, == -A,, - i &A,< . 
7=1 

(9) 

In other words, if there exists a vector c # 0 such that, for every i, xr=, c,A,, = 0 
(where we defined A,i 1: 1), we may add CT c,Ari to the left-hand side of (9) leading 
to a new set of Lagrange parameters, i.e., X,. + c, . When the rows of A are not linearly 
independent one can always eliminate one or more constraints until the resulting 
set of Lagrange parameters is unique. 

In practice, almost linear dependence amongst the rows of A is also objectionable. 
We therefore orthogonalize the rows of A by the Gram-Schmidt procedure. A new 
matrix, say A’, 

A’ = QA, (10) 

is thereby generated, where Q is a regular matrix. Given the set pr, r = 0 ,..., m of 
Lagrange parameters for A’ one readily verifies that the original set of Lagrange 
parameters is given by 

2.2. A Feasible Solution 

X = pQ. (11) 

Even when rank A = m + 1 there may still not be a solution to Ax = b which is 
a probability vector, i.e., which satisfies x > 0. This condition of nonnegativity 
of probability imposes additional restrictions on the components of the vector b. 
For one constraint this restriction is seen to be [4] the inequality 
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which is evident also on intuitive grounds (an average must be between its upper and 
lower bounds). If one of the inequalities is replaced by an equality one would have 
j X, 1 --f co. If both are replaced by equalities one would have that A, is a multiple 
OfA, FY (I,..., l), in contradiction to the assumed linear independence. Equation (12) 
can be easily generalized to more than one constraint [4], yielding the inequality 

(13) 

for any vector c # 0 in R”. Again equality on one side means that some of the hr’s 
tend to infinity and equaltiy on both sides means that the vectors A, are linearly 
dependent. Thus (13) is a necessary and sufficient condition for linear independence 
and for the existence of a feasible solution for (4). When a feasible solution exists, 
the convecity of 5’ assures that a unique maximum under the constraints (4) exists [5]. 
Therefore (13) is a necessary and sufficient condition for the existence of a maximal 
entropy distribution p (with finite h,‘s). 

How does one verify that (13) holds for any c f 0 ? From a practical point of view 
it seems better to break the problem into two parts: First perform a Gram-Schmidt 
orthogonalization thus verifying that the A,‘s are linearly independent, and then check 
the existence of a feasible solution to (4), using phase I of the modified simplex method 
of linear programming [6], for which computer programs are available. 

3. THE LAGRANGE PARAMETERS 

Given that a feasible solution exists we turn next to the determination of the 
Lagrange parameters. Equations (7) are a set of coupled nonlinear equations which 
define the &‘s implicitly. They may be solved by numerically searching for a zero 
of Ap - b. Tn practice, when more than two constraints are present one often obtains 
effective zeros for which the resulting p’s are quite removed from the correct solution. 
In principle, such a brute-force method fails to invoke the special character of p as 
the distribution of maximal entropy. 

The method here proposed is based on the following: 

LEMMA. Let Sz C R” be a simply connected domain. Letf: Sz - R”” be a continuously 
differentiable (vectorial) function. Denote its Jacobian by M, that is, Mij = a&/3x, , 
and suppose it is a symmetric positive deJinite matrix. The problem of solving the set 
of nonlinear equations f (x) = 0 is equivalent to finding a minimum of a concave scalar 
potentiaI function F. 

Proof The properties of Sz and f and the symmetry of M assure that f is a con- 
servative vector field in Rm. Therefore, there exists a potential function F: R’” + R 
such that fi = aF/8xi . Because Mij = aaF/ax,axj is the Hessian of F, its definiteness 
is sufficient for F to be strictly concave. Suppose x,, is a solution of f(x) = 0, then 
VF IX0 = 0, which proves that x0 is a unique global minimum of F. Q.E.D. 
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To employ the lemma, we construct a potential function F, as follows. Consider 
a trial distribution 

where B is given by (8) and 

z(W = ilexp [- flh,“&]. (15) 

By construction Z(ht) is a function of the m trial Lagrange parameters Art,..., h,,t. 
We now take the function f(ht) of the lemma (x - ht) to be Bpt. The set of At’s 
that satisfies f(ht) = 0 is clearly the set that is obtained by solving (7’). By direct 
differentiation one verifies that the potential for the problem is 

F = In Z(hIt,..., hmt). (16) 

Here Z(ht) is the function of the m Lagrange parameters defined in Eq. (15). 
The practical gain in going from Eq. (7) to (7’) should now be obvious. Using the 

A,.‘s as constraints, F would be In Z(Xt) + cLn=l Artby with Z given by (5). Defining B 
requires m . n subtractions at the beginning of the calculation but saves m2 operations 
each time F is calculated and m operations each time VF is calculated. Because we 
perform many function calculations during each iteration, this results in a net reduc- 
tion in computer time. 

We have previously proven [4] that F is strictly concave whenever the constraints 
are not linearly dependent (if there is a direction in R” along which the constraints 
are linearly dependent, F would be constant along that direction). Whenever there is 
a feasible solution to (4) (whenever (13) holds) F has (by the lemma) a unique minimum 
at the point h which solves (15), so that the problem of solving (15) is converted to 
finding a minimum for (16). 

Beside being a concave function of the trial Lagrange parameters and hence a 
conveneient computational tool, F admits of a physical interpretation. First of all 

min F(ht) = S[pJ 
A*GR” 

which also shows that F is an upper bound to the entropy of a distribution which is 
consistent with the same set of constraints [4]. Suppose that instead of the averages b 
we are given an “experimental distribution” q, to which we want to fit a trial distri- 
bution pt (cf. (14)), then one has to minimize the function 

W = i qi In qi/pii. 
i=l 

(18) 

An interpretation of Was a work function has been previously given [7]. The problem 
of minimizing W is strictly equivalent to minimizing F because these two functions 
differ by the constant S[q]. 
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4. THE COMPUTER PROGRAM 

4.1. Purpose 

Given an n? . n matrix A and an m-dimensional vector b, we find h which minimizes 
F (cf. (16)), after satisfying the consistency checks. The program can also find the 
minimum of W (cf. (18)) when q is given instead of b. In this case, b is calculated from 
4 according to b = Aq. In addition the program calculates the maximal entropy 
distribution p(h), the partition function Z (cf. (5)) In Z, S[p], and the “corrlation 
matrix” M (the Hessian of F). 

The same computations can also be performed given a prior distribution pO. 
Equations (4) and (7) are then replaced by 

(19) 

The program consists of three main stages: Checking for linear independence, 
verifying the existence of a feasible solution, and solving for h. 

4.2. Linear Independence 

A Gram-Schmidt orthogonalization of A is performed. At each stage of the proce- 
dure the angle between the vector to be orthogonalized and its projection on the sub- 
space of the vectors which are already orthogonal is calculated. This angle serves 
as a criterion for linear independence. If it is effectively zero, the constraints are 
linearly dependent and execution of the run is stopped. If it is smaller than some para- 
meter, the constraints are “almost linearly dependent” and a warning is issued. 
The execution then proceeds and the matrix Q (cf. 10)) is stored for performing the 
reverse transformation (11). 

4.3. A Feasible Solution 

The existence of a feasible solution to (2) is verified using the modified simplex 
method of linear programming [6]. Tf no feasible solution exists, the execution of the 
present run is stopped and data for the next example is read. 

4.4. Sohing for the Lagrange Parameters 

This is done by a modified Newton method, as follows: 

(I) The (orthogonalized) matrix A is replaced by B (cf. (14) and (15)), this is 
done for the practical reason explained above. 

(2) Because of the concavity of F the iterations converge for any initial guess 
fo Xt. However, three possibilities are given to the user: (i) ht == 0; (ii) Xt is equal to h 
of the previous run. (In case there was no previous run, it is automatically set to zero.) 
This option is recommended in the case of a series of runs where the probability 
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distribution (and therefore h) develop continuously as a function of som parameter 
(e.g., time). A considerable reduction in the number of iterations may thus be achieved. 
(iii) Read in ht determined arbitrarily. 

(3) Choice of the direction u = -MM-IVF for the iteration process. This direc- 
tion is usually better than the direction of the gradient because it gives an extremum 
to the second-order expansion of F to a Taylor series [8]. The difference is most signi- 
ficant when F has a long valley in some direction. Then -VF is in the direction of the 
valley, but not necessarily in the direction of the minimum X. In the present case, 
u is readily computed because we know both A4 and VF analytically. (In practice 
we do not acutally invert M. Instead, we solve a single set of linear equations 
Mu = -VF.) 

Nevertheless, the situation is not that simple. As may be seen from (16)F is asymp- 
totically (i.e., for I h / ---f co) linear (this point is discussed in [4]). If we happen to 
choose the initial guess in the asymptotic region, M becomes almost singular. Then 
we are limited by the round-off errors of the computer and it is not possible to solve 
for U. In such a case one can still set u = -VF with the intention that after an iteration 
or two one would be outside the asymptotic region. 

(4) The line search. The object here is to find min F along the direction U. 
This is done by finding two additional points along U, one on each side of the mini- 
mum, and fitting a parabola through the three points. The minimum of the parabola 
is taken as the starting point for the next iteration. 

Algorithms for a line search vary and are largely a matter of taste, but may have 
a large effect on the efficiency of the whole program. We have chosen for this task a 
subroutine by Dax, whose algorithm is described in [8]. Our experience shows that 
for n < 20 the number of iterations usually vaires between three to ten (depending 
on the number of constraints and on the initial guess). 

(5) Stopping criterion. The iterations are stopped if one of the following con- 
ditions are met: (i) / VF (2/~2 < 6 where 6 is some small given number and 
no12 = (l/m) x.ir A”Ti or (ii) the number of iterations is greater than 20. 

Whenever a run is complete, data for the next run is read, unless a cord with an 
and of data parameter is encountered. 

4.5. Memory Requirements 

The maximal values allowed for n and m are 200 and 20, respectively. We need one 
more row for the normalization constraint and two additional rows for the linear 
programming giving altogether the dimension 200 x 23. In order that the program 
does not take such a large memory in every run (especially since most problems do not 
have as many as 200 states and 20 constraints) A (and only A) is defined in blank 
common where it is given a small dimension which may be optionally increased by 
the user. 

The linear programming destroys the original A. Instead of retaining two such 
matrices, the original A is written on a tape. In this way it is possible to reduce the 
storage requirements to within normal operating conditions. 
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4.6. Practical Tips 

Although F is a strictly concave function and therefore the iteration procedure 
should theoretically converge for any initial guess, there are several practical problems. 
One that had already been mentioned is that the initial guess may be in the asymp- 
totic region, where the Hessian M is algorithmically not positive definite. The solution 
is to use the direction of the gradient. Another problem may arise when the constraints 
are almost linearly dependent (cf. Section 2.1). 

To avoid this problem we always transform to an orthonormal set of constraints, 
using the Gram-Schmidt orthonormalization procedure. Nevertheless, if the con- 
straints are almost linearly dependent, the orthogonalization procedure is liable to 
introduce a very large (round-off) error. Therefore, the program issues a warning and 
the user is advised to examine the choice of constraints. Yet another problem may 
arise if some of the probabilities are too small (it is not possible to express zero as an 
exponent with a finite argument), when some of the Lagrange parameters may tend 
to infinity. As a result, small changes in the probabilities or in the averages may cause 
wild fluctuations in the Lagrange multipliers and the round-off errors in the values 
of the averages may render them meaningless. Moreover, the execution may be stopped 
by the computer’s system because of an error in the function EXP, namely, an argu- 
ment which is too small or too large. We have inserted a recovery procedure from such 
an error which returns the control to the main program which in turn reads the data 
for a new run. rn addition, the program issues a warning when some of the proba- 
bilities are too small. The user is advised to delete such probabilities, thus transforming 
to a sample space with fewer points, where the above-mentioned problems would not 
be encountered. 

4.7. A Numerical Example 

A numerical example is given in Table 1. The system chosen is of n = 20 states with 
one, two, or three constraints. The constraints chosen were the moments of the state 
index i: 

A,, == ir, r == 1, 2, 3; i = l,..., 20. (21) 

The initial guess in all cases was h, t = 0 The fast convergence of the algorithm is . 
seen from the small number of iterations needed. 

4.8. Technical Details 

The program is written in FORTRAN IV and was executed on the CDC 6400 and 
Cyber computers of the Hebrew University of Jerusalem. It was compiled by FTN, 
scope 3.4.4. Compilation time is -10 set, whereas the execution time of the above 
example was 1.2 sec. The following routines from the IMSL library were used: 
ZX3LP for linear programming and LEQT2P for solving a set of linear equations 
where the matrix is symmetric and positive definite. 
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TABLE I 

An application of the computer program for m = I, 2 and 3 constraints (note the decrease of the 
entropy S as m increases). 

\ 
in 1 2 3 

4, 5.0092 
g 4 -0.1560 

o.oooo 
0.0000 
2.6697 

ITERa 3 

4.3616 2.0027 
-0.0266 1.1937 
--0.0052 -0.1342 

0.0000 0.0038 
2.6609 2.5456 

3 4 

15 
250 

4300 

a ITER is the number of iterations needed for achieving an agreement of -I O-~j ‘;; between the 
calculated averages and the given b,‘s. The third constraint has an angle of 0.12’ with its projection 
on the subspace spanned by A,, , A, , and A, 
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